Senin, 09 Januari 2012

Fluida Statis (Sejarah Perkembangan Fisika)




I.PENDAHULUAN

1.1              Latar Belakang

Fluida berupa gas dan cairan. Dalam kehidupan, kita selalu berhubungan dengan fluida. Gejala-gejala alam yang sering terjadi di sekitar kita biasanya disebabkan oleh pengaruh fluida. Mekanika fluida adalah suatu ilmu yang memelajari perilaku fluida baik dalam keadaan diam (static) maupun bergerak (dynamic) serta akibat interaksi dengan media batasnya (zat padat atau fluida dengan yang lain ). Seperti kebanyakan disipilin ilmu lainnya, mekanika fluida mempunyai sejarah panjang dalam pencapaian hasil-hasil pokok hingga menuju ke era modern seperti sekarang ini. Mekanika fluida berkembang sejalan dengan perjalanan perkembangan peradaban manusia. Banyak aspek kehidupan manusia yang terkait dengan mekanika fluida, seperti transportasi, industri, aerodinamik bangunan, mesin-mesin fluida, dan kesehatan. Pada makalah ini akan dibahas tentang teori perkembangan fluida diam (statik), serta mengetahui penemu teori tersebut.

1.2              Tujuan

Adapun tujuan dari penyusunan makalah ini adalah:
a.       Menyelesaikan tugas kelompok dari mata kuliah Sejarah Perkembangan Fisika
b.      Mahasiswa dapat mengetahui sejarah perkembangan ilmu mekanika fluida statis.
c.       Mahasiswa dapat mengetahui ilmuwan-ilmuwan yang menemukan teori-teori fluida statis.
1.3              Rumusan Masalah

Adapun rumusan masalah pembuatan makalah inia adalah sebagai berikut:
a.       Bagaimana sejarah perkembangan teori fluida?
b.      Siapakah penemu teori-teori fluida statik?
c.       Bagaimanakah sejarah ilmuwan yang menemukan teori-teri fluida?




















II.ISI

2.1       Sejarah Teori Fluida Statik

Mekanika fluida adalah suatu ilmu yang memelajari perilaku fluida baik dalam keadaan diam (static) maupun bergerak (dynamic) serta akibat interaksi dengan media batasnya (zat padat atau fluida dengan yang lain ). Seperti kebanyakan disipilin ilmu lainnya, mekanika fluida mempunyai sejarah panjang dalam pencapaian hasil-hasil pokok hingga menuju ke era modern seperti sekarang ini. Mekanika fluida berkembang sejalan dengan perjalanan perkembangan peradaban manusia. Banyak aspek kehidupan manusia yang terkait dengan mekanika fluida, seperti transportasi, industri, aerodinamik bangunan, mesin-mesin fluida, dan kesehatan.
Ilmu mekanika fluida sudah terfikirkan sejak zaman pra sejarah. Hal tersebut dibuktikan dengan adanya beberapa hal yang berkaitan dengan permasalahan fluida.seperti adanya kapal layar yang dilengkapi dengan dayung,dan system pengairan. Pada masa prasejarah, kebudayaan-kebudayaan kuno sudah memiliki pengetahuan yang cukup untuk memecahkan persoalan-persoalan aliran tertentu. Sebagai contoh perahu layar yang sudah dilengkapi dengan dayung dan sistem pengairan untuk pertanian sudah dikenal pada masa itu. Pada abad ketiga sebelum Masehi, Archimedes dan Hero dari Iskandariah, memperkenalkan hukum jajaran genjang untuk penjumlahan vektor. Selanjutnya Archimedes (285-212 SM) merumuskan hukum apung dan menerapkannya pada benda-benda terapung, melayang, dan tenggelam.
Sejak permulaan Masehi sampai zaman Renaissance terus menerus terjadi perbaikan dalam rancangan sistem-sistem aliran, seperti: kapal, saluran, dan talang air. Akan tetapi tidak ada bukti-bukti adanya perbaikan yang mendasar dalam analisis alirannya. Akhirnya kemudian Leonardo da Vinci (1452-1519) menjabarkan persamaan kekekalan massa dalam aliran tunak satu-dimensi. Leonardo da Vinci adalah ahli ekspremen yang ulung, dan catatan-catatannya berisi diskripsi yang seksama tentang gelombang, jet atau semburan, loncatan hidraulik, pembentukan pusaran, dan rancangan-rancangan seretan-rendah (bergaris-alir) serta seretan-tinggi (parasut). Berikutnya muncul Galileo (1564-1642) dengan studi sistematik mengenai dasar-dasar hidrostatika dengan memperkenalkan beberapa hukum tentang ilmu mekanika. Pada 1643 seorang murid Galileo bernama Evangelista Toricelli memperkenalkan hukum tentang aliran-bebas zat cair melewati lubang (celah). Soal-soal mengenai permasalahan momentum fluida akhirnya dapat dianalisis oleh Isaac Newton (1642-1727) setelah memperkenalkan hukum-hukum gerak dan hukum kekentalan untuk fluida linear yang sekarang dinamakan fluida Newton. Pada 1650 diperkenalkan hukum distribusi tekanan dalam zat cair yang dikenal dengan hukum Pascal yang diperkenalkan oleh Blaise Pascal (1623 – 1662).


2.2       Penemu-Penemu Teori Fluida Statik

Adapun para nama-nama penemu teori fluida statik yang dapat kita sebut diantaranya adalah:

a.                  Archimedes (287 – 212 SM)
Sejarah Penemuan Teori Archimedes
Archimedes lahir di kota Sirakusa di Pulau Sisilia, sebelah selatan Italia, pada tahun 287 SM. Ia belajar di kota Alexandria, Mesir. Kemudian ia kembali ke Mesir. Ayahnya ahli bintang namanya Phidias.
Archimedes adalah ilmuan terbesar sebelum Newton. Ia adalah ahli matematika Yunani (terutama geometri), ahli fisika (terutama mekanika , statistika, dan hidrostatika), ahli optika, ahli astronomi, warga Negara Sisilia, pengarang , dan penemu. Ia mendapat julukan bapak IPA eksperimental karena mendasarkan penemuannya pada eksperimen. Kebenaran penemuan-penemuannya telah ia buktikan dengan eksperimen.
Konsep pelambungan (air mendorong objek keatas sama dengan berat air yang digantikan objek) dan pengungkit (gaya mendorong kebawah pada satu sisi dari pengungkit menciptakan gaya mengangkat pada sisi lain yang proposional pada panjang dua sisi pengungkit) mendasari semua ilmu kuantitatif dan teknik. Prinsip ini mewakili pemahaman manusia yang paling awal mengenai hubungan dalam dunia fisika di sekitar kita dan merumuskan secara matematika kejadian fisika di dunia. Berbagai kemajuan ilmu dan teknik bergantung pada penemuan 2 prinsip ini. Seperti teknologi kapal (konvensional) dan kapal selam (submarine).
 Pada waktu itu yang jadi raja di Sirakusa adalah Hieron II,sahabat Archimedes. Pada suatu hari Hieron II menyuruh seorang pandai emas membuat mahkota.Hieron merasa bahwa pandai emas itu curang. Mahkota itu tidak terbuat dari emas murni tapi dari campuran emas dan perak. Maka Hieron menyuruh Archimedes membuktikan kecurangan pandai emas itu tanpa merusak mahkota tersebut.
Berhari-hari Archimedes berpikir keras. Ia tidak tahu cara membuktikan kecurangan pandai emas. Waktu itu belum ada alat elektronik yang dapat mendeteksi apakah sebuah benda terbuat dari emas murni atau emas campuran. Ketika kepala Archimedes terasa panas karena terlalu banyak berpikir,ia masuk ke tempat mandi umum. Ia membuka pakaian dan masuk ke bak mandi yang penuh dengan air. Archimedes menyadari lengannya terapung diatas air. Sebuah ide kemudian terbesit di benaknya. Dia menarik tangannya kedalam air dan dia merenggangkan lengannya. Lengannya dengan sendiri mengapung kembali ke atas. Kemudian dia mencoba berdiri dari bak, level air menjadi menyusut, kemudian dia duduk kembali, level air meningkat kembali. Dia berbaring, air naik lebih tinggi lagi, dan dia merasa lebih ringan. Dia berdiri, level air menurun dan dia merasa dirinya lebih berat. Air harusnya telah mendorong dia keatas sehingga dia merasa ringan.
Tiba-tiba ia bangkit, lupa mengenakan pakaian, sambil telanjang bulat lari sepanjang jalan menuju rumahnya. Kepada istrinya ia berteriak, Eureka! Eureka! Artinya, Sudah kutemukan! Sudah Kutemukan! Apa yang ia temukan? Ia menemukan nama hukum Archimedes ,yang bunyinya: “Sebuah benda yang dicelupkan sebagian atau seluruhnya ke dalam zat cair akan mendapat gaya keatas seberat zat cair yang didesak oleh benda itu”. Dengan hukum itu ia bermaksud membuktikan kecurangan pandai emas.
Dirumahnya ia melakukan percobaan selanjutnya. Dia kemudian mengambil sebuah batu dan sebalok kayu yang memiliki ukuran sama ke dalam bak dan merendamkan mereka kedua-duanya. Batu tenggelam tetapi terasa ringan. Dia harus menekan kayu supaya tenggelam. Itu artinya air harus menekan ke atas dengan gaya yang relatif terhadap jumlah air yang tergantikan oleh ukuran objek daripada berat dari objek. Seberat apa objek itu dirasakan di air mempengaruhi kepadatan objek.Ini membuat Archimedes mengerti bagaimana memecahkan masalah raja. Dia kembali ke raja. Kuncinya adalah kepadatan. Jika mahkota ini terbuat dari logam bukan emas, dia dapat memiliki berat yang sama tetapi akan memiliki kepadatan yang berbeda sehingga akan menumpahkan jumlah air yang berbeda. Mahkota dan sebuah emas yang beratnya sama di masukkan ke sebuah mangkok berisi air. Mahkotanya ternyata menumpahkan air lebih banyak sehingga terbukti mahkota itu adalah palsu.
Pada masa itu, kapal yang dibuat oleh Archimedes adalah kapal yang terbesar. Untuk dapat mengambang, kapal ini harus dikeringkan dahulu dari air yang menggenangi dek kapal. Karena besarnya kapal ini, jumlah air yang harus dipindahkanpun amat banyak. Karena itu Archimedes menciptakan sebuah alat yang disebut "Sekrup Archimedes".
Dengan ini air dapat dengan mudah disedot dari dek kapal. Ukuran kapal yang besar ini juga menimbulkan masalah lain. Massa kapal yang berat, menyebabkan ia sulit untuk dipindahkan. Untuk mengatasi hal ini, Archimedes kembali menciptakan sistem katrol yang disebut "Compound Pulley". Dengan sistem ini, kapal tersebut beserta awak kapal dan muatannya dapat dipindahkan hanya dengan menarik seutas tali. Kapal ini kemudian diberi nama Syracusia, dan menjadi kapal paling fenomenal pada zaman itu.

Sifat eksentrik Archimedes

Dalam hal eksentrik Archimedes sering dibandingkan dengan Weierstrass (1815 – 1897). Menurut penuturan saudarinya, Weierstrass – pada waktu sekolah, tidak pernah diberi kepercayaan untuk memegang pinsil. Apabila memegang pinsil, maka dia akan menggambari apapun yang dianggapnya masih kosong. Dari wallpaper sampai balik kerah baju. Sebaliknya, Archimedes - belum mengenal kertas, selalu menggambar di pasir atau tanah yang lembek sebagai ganti fungsi “papan tulis.” Dia akan menggambar sesuka hatinya. Apabila duduk di dekat perapian, dia akan mengambil arang atau sisa pembakaran dan digunakan untuk menggambar.

Setelah mandi, biasanya dia akan melumuri seluruh tubuhnya dengan minyak zaitun, yang lazim dipakai pada jaman itu, daripada mengenakan pakaian, dia akan menggambar diagram-diagram dengan menggunakan jari kuku dengan “papan tulis” adalah seluruh tubuhnya yang berminyak. Ada sifat yang lazim diidap oleh para matematikawan seperti: lupa makan. Sifat lupa makan Archimedes, saat menekuni problem matematika, ternyata diwariskannya kepada [Isaac] Newton dan [William Rowan] Hamilton.

Prinsip Archimedes
Dalam kehidupan sehari-hari, kita akan menemukan bahwa benda yang dimasukan ke dalam zat cair seperti air misalnya, memiliki berat yang lebih kecil daripada ketika benda tidak berada di dalam zat cair tersebut. kamu mungkin sulit mengangkat sebuah batu dari atas permukaan tanah tetapi batu yang sama dengan mudah diangkat dari dasar kolam. Hal ini disebabkan karena adanya gaya apung sebagaimana telah dijelaskan sebelumnya. Gaya apung terjadi karena adanya perbedaan tekanan zat cair pada kedalaman yang berbeda. Seperti yang telah dijelaskan pada pokok bahasan Tekanan pada Zat cair, tekanan zat cair bertambah terhadap kedalaman. Semakin dalam zat cair (zat cair), semakin besar tekanan zat cair tersebut. Ketika sebuah benda dimasukkan ke dalam zat cair, maka akan terdapat perbedaan tekanan antara zat cair pada bagian atas benda dan zat cair pada bagian bawah benda. Zat cair yang terletak pada bagian bawah benda memiliki tekanan yang lebih besar daripada zat cair yang berada di bagian atas benda. Perhatikan gambar di bawah!
Pada gambar di atas, tampak sebuah benda melayang di dalam air. Zat cair yang berada dibagian bawah benda memiliki tekanan yang lebih besar daripada zat cair yang terletak pada bagian atas benda. Hal ini disebabkan karena zat cair yang berada di bawah benda memiliki kedalaman yang lebih besar dari pada zat cair yang berada di atas benda (h2 > h1).
Besarnya tekanan zat cair pada kedalamana h2 adalah :
P2  =   → F2 = P2A= ρgh2A
Besarnya tekanan zat cair pada kedalamana h1 adalah :
P1 =   → F1 = P1A= ρgh1A
F2 = gaya yang diberikan oleh zat cair pada bagian bawah benda, F1 = gaya yang diberikan oleh zat cair pada bagian atas benda, A = luas permukaan benda, Selisih antara F2 dan F1 merupakan gaya total yang diberikan oleh zat cair pada benda, yang kita kenal dengan istilah gaya apung. Besarnya gaya apung adalah :
Fapung = F2-F1
Fapung = (ρgh2A)- (ρgh1A)
Fapung = ρgA(h2-h1)
Fapung = ρF gAh
Fapung = ρF gV

Keterangan :
ΡF= Massa jenis fluida (kg/m3)
g=Percepatan gravitasi (m/s2)
V=volume benda yang berada didalam fluida (m3)
Karena :
Ρ =  → m = ρV
Maka persamaan yang menyatakan besarnya gaya apung (Fapung) di atas bisa kita tulis menjadi :
Fapung = ρFGv
Fapung = mFg = WF
mFg = wF = berat zat cair yang memiliki volume yang sama dengan volume benda yang tercelup.
Berdasarkan persamaan di atas, kita bisa mengatakan bahwa gaya apung pada benda sama dengan berat zat cair yang dipindahkan. Ingat bahwa yang dimaksudkan dengan zat cair yang dipindahkan di sini adalah volume zat cair yang sama dengan volume benda yang tercelup dalam zat cair. Pada gambar di atas, telah menggunakan ilustrasi di mana semua bagian benda tercelup dalam zat cair (air). Jika dinyatakan dalam gambar maka akan tampak sebagai berikut :
Apabila benda yang dimasukkan ke dalam zat cair  terapung, di mana bagian benda yang tercelup hanya sebagian maka volume zat cair yang dipindahkan = volume bagian benda yang tercelup dalam zat cair tersebut. Tidak peduli apapun benda dan bagaimana bentuk benda tersebut, semuanya akan mengalami hal yang sama. Ini adalah buah karya eyang buyut Archimedes (287-212 SM) yang saat ini diwariskan kepada kita dan lebih dikenal dengan julukan “Prinsip Archimedes”. Prinsip Archimedes menyatakan bahwa :
Ketika sebuah benda tercelup seluruhnya atau sebagian di dalam zat cair, zat cair akan memberikan gaya ke atas (gaya apung) pada benda, di mana besarnya gaya ke atas (gaya apung) sama dengan berat zat cair yang dipindahkan.
Kamu bisa membuktikan prinsip Archimedes dengan melakukan percobaan kecil-kecilan berikut: Masukan air ke dalam sebuah wadah (ember dkk). Usahakan sampai meluap sehingga ember tersebut benar-benar penuh terisi air. Setelah itu, masukan sebuah benda ke dalam air. Setelah benda dimasukan ke dalam air, maka sebagian air akan tumpah. Volume air yang tumpah = volume benda yang tercelup dalam air tersebut. Jika seluruh bagian benda tercelup dalam air, maka volume air yang tumpah = volume benda tersebut. Tapi jika benda hanya tercelup sebagian, maka volume air yang tumpah = volume dari bagian benda yang tercelup dalam air Besarnya gaya apung yang diberikan oleh air pada benda = berat air yang tumpah (berat air yang tumpah = w = mairg = massa jenis air x volume air yang tumpah x percepatan gravitasi). Volume air yang tumpah = volume benda yang tercelup dalam air.

Penemuan-penemuan Archimedes

Minat Archimedes adalah matematika murni: bilangan, geometri, menghitung luas bentuk-bentuk geometri. Archimedes dikenal karena kehebatannya mengaplikasikan matematika. Kehebatan inilah yang akan diuraikan di bawah ini.

Archimedes berjasa menemukan ulir Archimedes, alat untuk mengangkat air dengan jalan memutar gagang alat ini dengan tangan. Penggunaan awal alat ini adalah untuk membuang air yang masuk ke dalam perahu atau kapal. Tapi dalam perkembangannya digunakan untuk memompa air dari dataran yang lebih rendah ke tanah yang lebi tinggi. Alat ini sampai sekarang masih dipakai oleh para petani di seluruh dunia. 

Penggunaan cermin pembakar, memberi indikasi bahwa beberapa bentuk geometri sudah diketahui Archimedes, teristimewa bentuk hiperbola. Bentuk lingkaran, elips dan hiperbola terbentuk hanya bagaimana cara kita mengiris suatu bidang. Parabola adalah bentuk istimewa: dapat “mengambil” sinar matahari, dari arah manapun, dan difokuskan pada suatu titik, dan konsentrasikan semua energi cahaya pada bidang sempit untuk dipancarkan kembali dalam berkas sinar yang sangat panas. 

Archimedes sudah mencoba menghitung luas parabola, elips, hiperbola dan menentukan titik pusat gravitasi pada setengah lingkaran dan lingkaran. Tidak diketahui secara pasti berapa banyak karya-karya Achimedes yang hilang atau belum ditemukan satu yang terpenting, Metode (The Method, sebagian besar sudah ditemukan pada tahun 1906), tapi karya lain termasuk: On Spiral, On the Measuremant of the Circle, Quadrature of the Parabola, on Conoids & Spheroids, on the Sphere & Cylinder, Books of Lemmas dll. tidak sesuai dengan segala sesuatu yang dihasilkan Archimedes pada jaman Romawi. 

Archimedes adalah orang pertama yang memberi metode menghitung besar ? (pi) dengan derajat akurasi yang tinggi. Menghitung besar ? dilakukan dengan cara membuat lingkaran diantara dua segi enam. Luas segi enam kecil < luas lingkaran < luas segi enam besar. Dengan memperbesar jumlah segi - Archimedes membuat 96 sisi, diperoleh besaran:

3 10/71 < Л < 3 1/7

(3,14084 < Л < 3,14285)

Dalam menghitung zaman modern, para matematikawan mengikuti jejak Archimedes. Sebagai contoh, pada abad 17, Ludolph van Ceulen dari Jerman, menggunakan segi 262. Upaya gigih guna mencari besaran ? ini dilakukannya sampai dia meninggal. Jadi, tidaklah mengherankan, apabila orang Jerman – untuk menghormati jasa, pada nisan dipahat “Angka Ludolphian” yang berarti di Jerman.

Penggunaan tuas dalam perang dengan menciptakan crane, menunjuk bahwa Archimedes sudah memahami prinsip tuas, yaitu: dua benda yang mencapai keseimbangan berat pada suatu jarak tertentu memiliki besar yang proporsional secara timbal-balik.

b.                  Leonardo Da Vinci (1452-1519)
Leonardo da Vinci (lahir di Vinci, propinsi Firenze, Italia, 15 April 1452 – meninggal di Clos Lucé, Perancis, 2 Mei 1519 pada umur 67 tahun) adalah arsitek, musisi, penulis, pematung, dan pelukis Renaisans Italia. Leonardo berasal dari sebuah keluarga yang cukup mapan. Meskipun ibunya, Caterina di Piero, hanyalah seorang putri petani, ayahnya, Pietro d'Antonio da Vinci adalah seorang notaris di kota Florence. dia adalah salah satu penemu ilmu hidrolik, mungkin juga termasuk perangkat hidrometer. Penemuan Leonardo lainnya yang bermanfaat, misalnya, pakaian selam. Selain itu, peranti terbang rancangannya juga telah menerapkan prinsip aerodinamika. Dari sketsa penelitian kapal selam bisa terlihat, mula - mula dia tertarik pada arus air. Kemudian dengan serius meneliti ikan - ikan yang berenang melawan arus serta hambatan tekanan arus yang terjadi pada kapal, dan meninggalkan sejumlah lima sketsa mengenai badan kapal, yang besar pengaruhnya pada masa sekarang. Sejak awal Masehi sampai zaman Renaissance telah terjadi perbaikan dalam rancangan sistem-sistem aliran seperti: kapal, saluran, dan talang air. Akan tetapi tidak ada bukti-bukti adanya perbaikan yang mendasar dalam analisis alirannya. Akhirnya kemudian Leonardo da Vinci menjabarkan persamaan kekekalan massa dalam aliran tunak satu-dimensi.

c.                   Galileo Galilei (1564-1642)
Sejarah Penemuan Dasar-Dasar Hidrostatistika
Ilmuwan Itali besar ini mungkin lebih bertanggung jawab terhadap perkembangan metode ilmiah dari siapa pun juga. Galileo lahir di Pisa, tahun 1564. Selagi muda belajar di Universitas Pisa tetapi mandek karena urusan keuangan. Meski begitu tahun 1589 dia mampu dapat posisi pengajar di universitas itu. Beberapa tahun kemudian dia bergabung dengan Universitas Padua dan menetap di sana hingga tahun 1610. Dalam masa inilah dia menciptakan tumpukan penemuan-penemuan ilmiah.
Sumbangan penting pertamanya di bidang mekanika. Aristoteles mengajarkan, benda yang lebih berat jatuh lebih cepat ketimbang benda yang lebih enteng, dan bergenerasi-generasi kaum cerdik pandai menelan pendapat filosof Yunani yang besar pengaruh ini. Tetapi, Galileo memutuskan mencoba dulu benar-tidaknya, dan lewat serentetan eksperimen dia berkesimpulan bahwa Aristoteles keliru. Yang benar adalah, baik benda berat maupun enteng jatuh pada kecepatan yang sama kecuali sampai batas mereka berkurang kecepatannya akibat pergeseran udara. (Kebetulan, kebiasaan Galileo melakukan percobaan melempar benda dari menara Pisa tampaknya tanpa sadar).


d.                  Evangelista Toricelli (1608-1647)
Evangelista Torricelli (1608-1647), fisikawan Italia kelahiran Faenza dan belajar di Sapienza College Roma. Ia menjadi sekretaris Galileo selama 3 bulan sampai Galileo wafat pada tahun 1641. Tahun 1642 ia menjadi profesor matematika di Florence.
Torricelli adalah ahli fisika Italia, penemu barometer air raksa, penemu Hukum Torricelli, penemu tabung hampa kecil yang pertama di dunia, ahli matematika, pengarang, guru besar, sekretaris, pembantu, dan murid Galileo. Ia memperbaiki mikro-skop dan teleskop. Ia meninggal di Florence pada tanggal 25 Oktober 1647 pada umur 39 tahun. Pada umur 22 tahun ia belajar di Roma pada Benedetto Castelli, pendiri ilmu hidrolik, ahli matematika murid Galileo Galilei. Torricelli menjadi sekretaris Galileo selama tiga bulan sampai Galileo wafat pada tahun 1641.
Kisah pertemuan Torricelli dengan Galileo ibarat pertemuan antara seorang pengagum dengan tokoh yang dikaguminya. Pada umur 30 tahun ia membaca buku karya Galileo dan merasa kagum. Ia menulis surat kepada Galileo pada tahun 1632, tetapi baru diundang oleh Galileo sembilan tahun kemudian, setelah Galileo terkesan akan tulisan Torricelli tentang gerak.
Waktu itu Galileo sudah tua dan buta. Torricelli diterima sebagai sekretarisnya dan tiga bulan kemudian Galileo meninggal. Torricelli diangkat jadi pengganti Galileo sebagai ahli matematika di Istana Grand Duke Ferdinand II dan sebagai guru besar matematika di akademi Florence. Untuk mengingat pertemuan dan persinggungan kedua ilmuwan besar itu, di Florence dibuat patung Torricelli dan Galileo.
Pada tahun 1643 ia menetapkan tentang tekanan atmosfer dan menemukan alat untuk mengukurnya, yaitu barometer. Torricelli membuat eksperimen sederhana, yang dinamakan Torricelli Experiment, yaitu ia menggunakan sebuah tabung kaca kuat dengan panjang kira-kira 1 m dan salah satu ujungnya tertutup. Dengan menggunakan sarung menghadap ke atas. Dengan menggunakan corong ia menuangkan raksa dari botol ke dalam tabung sampai penuh. Kemudian ia menutup ujung terbuka tabung dengan jempolnya, dan segera membaliknya. Dengan cepat ia melepaskan jempolnya dari ujung tabung dan menaruh tabung vertikal dalam sebuah bejana berisi raksa. Ia mengamati permukaan raksa dalam tabung turun dan berhenti ketika tinggi kolom raksa dalam tabung 76 cm di atas permukaan raksa dalam bejana. Ruang vakum terperangkap di atas kolam raksa. Selama beberapa hari Torriceli mengamati bahwa tinggi air raksa dalam tabung selalu berubah-ubah. Akhirnya ia tahu bahwa hal itu disebabkan oleh tekanan udara. Tekanan air raksa setinggi 76 sentimeter itu kemudian disebut tekanan satu atmosfer. Kesimpulan dari percobaan Toricelli adalah “ Berdasarkan kapilaritas air raksa yang naik ke dalam tabung, naiknya permukaan raksa dalam tabung tersebut setinggi 76 cm dari udara sehingga toricelli menyimpulkan bahwa 1 atm = 76 cmHg”.

e.                   Blaise Pascal (1623-1662)
Blaise Pascal (1623-1662) terlahir di Clermont Ferrand pada 19 June 1623. Pada tahun 1631 keluarganya pindah ke Paris.
Blaise Pascal adalah anak Etienne Pascal, seorang ilmuwan dan matematikawan lahir di Clermont. Etienne Pascal, juga merupakan penasehat kerajaan yang kemudian diangkat sebagai presiden organisasi the Court of Aids di kota Clermont. Ibu Pascal, Antoinette Bigure, meninggal saat umur Pascal berumur empat tahun tidak lama setelah memberinya seorang adik perempuan, Jacqueline. Ia mempunyai kakak perempuan yang bernama, Gilberte.
Pascal juga pernah melakukan studi hidrodinamik dan hidrostatik, prinsip-prinsip cairan hidraulik ( hydraulic Fluida ). Penemuannya meliputi hidraulik tekan ( press Hydraulic ) dan tentang jarum suntik ( syringe ).
Umur 18 tahun, tubuhnya lemah dan mengalami kelumpuhan tungkai atas membuat Pascal harus tinggal di tempat tidur. Harus menelan cukup makanan agar tetap hidup, meskipun selalu merasa sakit kepala. Umur 24 tahun, dia dan Jacqueline pergi ke Paris untuk pemeriksaan medis dengan peralatan yang lebih canggih. Ternyata dia diharuskan tinggal di rumah sakit. Saat ini banyak ilmuwan datang menyambangi yang tertarik dengan eksperimen kehampaan (vakum) yang sedang dikerjakannya. Descartes datang untuk berdiskusi. Akhir tahun, kesehatan tubuhnya memungkinkan dia meneruskan pekerjaan, menguji teori kehampaan.
Ia memiliki sebuah replika percobaan yang berupa tabung sepanjang 31 inci (78,7 cm) yang diisi air raksa yang diposisikan terbalik dalam sebuah mangkok mercuri. Pascal ingin mengetahui kekuatan apa yang menjaga mercuri dalam tabung, dan apa yang mengisi ruang kosong dibagian atas dalam tabung mercuri tersebut. Apakah berisi: udara? uap air raksa? kehampaan?
Pada waktu itu, kebanyakan ilmuwan berpendapat bahwa ruang kosong ditabung atas mercuri tersebut adalah tak lebih daripada vacuum ( kosong ), dan beberapa kejadian yang dianggap tak mungkin oleh ilmuwan sebelumnya, telah terlihat saat percobaan itu dilakukan. Hal ini berdasarkan pemikiran Ariestoteles, bahwa “ penciptaan “ sesuatu yang bersifat “ subtansi “, apakah terlihat atau tidak terlihat, dan “zat / subtansi “ selamanya bergerak. Hukum Ariestoteles adalah sebagai berikut : “ Segala sesuatu yang bergerak, harus digerakan oleh sesuatu ( Everything that is in motion must be moved by something ) “. Oleh karena itu para ilmuwan penganut Ariestoteles menyatakan, bahwa vacuum ( tenaga isap ) itu adalah hal yang mustahil. Bagaimana bisa begitu ? Maka bukti itu ditunjukan :
  • Cahaya yang melewati itu di sebut “ vacuum ( kosong ) ” dalam tabung kaca.
  • Ariestoteles menulis, segala sesuatu bergerak, harus digerakan oleh sesuatu yang lain
Oleh karenanya, disana harus ada “sesuatu” yang tak terlihat untuk memindahkan cahaya melalui tabung kaca, maka dari itu tidak ada vacuum ( tenaga isap atau tekan ) di tabung itu. Tidak di tabung kaca maupun, dimanapun. Vacuum itu tidak ada dan sesuatu yang mustahil.
Pada saat itu timbul ide membawa tabung ke puncak gunung dengan praduga: jika ada selisih tinggi air raksa, maka hal itu menunjuk ada tekanan udara. Ketika tabung dibawa turun gunung, ketinggian air raksa kembali normal. Meningkat. Hal ini membuktikan bahwa udara mempunyai berat dan berat ini berperan mendorong air raksa naik atau turun.
Setelah melakukan percobaan mendalam di vena ini, di tahun 1647 Pascal mengeluarkan risalah Experiences nouvelles touchant le vide (“New Experiments with the Vacuum – Percobaan baru dengan Vacuum”), dia menjelaskan dengan rinci aturan dasar, bahwa derajat variasi cairan ( liquid ) bisa didukung oleh tekanan udara. Hal ini memberikan alasan atau bukti, bahwa memang ada vacuum pada kolom diatas cairan tabung barometer. Dan, pernyataan Ariestoteles dipatahkan oleh Pascal. Vacuum itu ada ! Bukan sesuatu yang mustahil. Pembuktian – pembuktian ini membuat Pascal konflik dengan para ilmuwan lainnya, terutama para ilmuwan terkemuka sebelum dia, apalagi para penganut Ariestoteles, termasuk berkonflik dengan Descartes. Dan pada saat itu muncul tuduhan Descartes bahwa pascal mencuri idenya.
Kecerdasan otak Pascal tidak perlu diragukan lagi, tapi sejak lahir fisiknya sangat lemah dan mudah terserang sakit. Tahun 1661, adiknya, Jacqueline meninggal. Pascal menunjukkan bela sungkawa kepada kakaknya, Gilberte dan kepada biarawati-biarawati teman Jacqueline. Satu tahun kemudian, kondisi kesehatan Pascal makin parah dan menolak semua bantuan yang datang atau hal apapun dapat meringankan sakitnya. Dia ingin meninggal di rumah sakit - seperti halnya orang miskin (orang kaya selalu meninggal di rumah), tapi maksudnya itu tidaklah kesampaian. Tanggal 19 Agustus 1662, dini hari, Pascal meninggal setelah lama tidak sadarkan diri. Penyebab kematian Pascal tidak diketahui dengan jelas. Beberapa orang menyebut karena TBC; lainnya menyebut karena keracunan logam atau terkena dyspepsia yang melemahkan fungsi otak. Pascal meninggalkan karya yang berjudul Pensees dan Provincial Letters yang sama sekali tidak berhubungan dengan matematika.
Pascal juga menulis tentang hidrostatik, yang menjelaskan eksperimennya menggunakan barometer untuk menjelaskan teorinya tentang Persamaan Benda Cair (Equilibrium of Fluids), yang tak sempat dipublikasikan sampai satu tahun setelah kematiannya. Makalahnya tentang Persamaan Benda Cair mendorong Simion Stevin melakukan analisis tentang paradoks hidrostatik dan dan meluruskan apa yang disebut sebagai hukum terakhir hidrostatik: “Bahwa benda cair menyalurkan daya tekan secara sama-rata ke semua arah” yang kemudian dikenal sebagai Hukum Pascal. Hukum Pascal dianggap penting karena keterkaitan antara Teori Benda Cair dan Teori Benda Gas, dan tentang Perubahan Bentuk tentang keduanya yang kemudian dikenal dengan Teori Hidrodinamik.

Hukum Pascal (1658)

"Jika suatu zat cair dikenakan tekanan, maka tekanan itu akan merambat ke segala arah dengan tidak bertambah atau berkurang kekuatannya".
Hukum Pascal menyatakan bahwa Tekanan yang diberikan zat cair dalam ruang tertutup diteruskan ke segala arah dengan sama besar.
** Segitiga Pascal bukan ditemukan oleh Pascal. Versi awal segitiga Pascal sudah ada pada naskah Cina yang diterbitkan tahun 1303, atau 320 tahun sebelum Pascal lahir. Buku karangan Chu Shih-Chieh, Ssu Yuan Yii Chien mencantumkan tabel itu hanya sampai 9 tingkat. Adopsi segitiga Pascal terdapat dalam buku Murai Chusen’s dari Sampo Doshi-mon yang terbit tahun 1781.
 *** Ide menggunakan tabung berisi air raksa adalah ide original dari Galileo yang diteruskan oleh sekretarisnya, Evangelista Torricelli, juga penemu barometer.





















III. PENUTUP

3.1       Kesimpulan
            Hal-hal yang dapat disimpulkan dari pembahasan tentang sejarah perkembangan teori fluida statis ini adalah pada abad ketiga sebelum Masehi Archimedes menemukan nama hukum Archimedes ,yang bunyinya: “Sebuah benda yang dicelupkan sebagian atau seluruhnya ke dalam zat cair akan mendapat gaya keatas seberat zat cair yang didesak oleh benda itu”. Kemudian Leonardo da Vinci (1452-1519) menjabarkan persamaan kekekalan massa dalam aliran tunak satu-dimensi. Berikutnya muncul Galileo (1564-1642) dengan studi sistematik mengenai dasar-dasar hidrostatika dengan memperkenalkan beberapa hukum tentang ilmu mekanika. Pada 1643 seorang murid Galileo bernama Evangelista Toricelli memperkenalkan hukum tentang aliran-bebas zat cair melewati lubang (celah). Soal-soal mengenai permasalahan momentum fluida dianalisis oleh Isaac Newton (1642-1727) setelah memperkenalkan hukum-hukum gerak dan hukum kekentalan untuk fluida linear yang sekarang dinamakan fluida Newton. Pada 1650, Pascal menulis tentang hidrostatik, yang menjelaskan eksperimennya menggunakan barometer untuk menjelaskan teorinya tentang Persamaan Benda Cair (Equilibrium of Fluids), yang tak sempat dipublikasikan sampai satu tahun setelah kematiannya. Kemudian Simion Stevin melakukan analisis tentang paradoks hidrostatik dan dan meluruskan apa yang disebut sebagai hukum terakhir hidrostatik: “Bahwa benda cair menyalurkan daya tekan secara sama-rata ke semua arah” yang kemudian dikenal sebagai Hukum Pascal.

3.2       Saran

Diharapkan pembaca dapat memberikan saran yang membangun untuk berkembangnya makalah ini.





DAFTAR PUSTAKA


http//www.id.Wikipedia.org/wiki/mekanika_fluida_statik
http://en.wikipedia.org/wiki/Galileo_Galilei 
http://www.gudangilmufisika.com/2010/03/konsep-archimedes.html







0 komentar:

Poskan Komentar